Additional short intermolecular distances are $2.73 \AA$ between $\mathrm{O}(21)$ and $\mathrm{H}(51)$ of the molecule at $2-x, 2-y$, $1-z$ and $2.35 \AA$ between $H(25)$ and $H(43)$ of the molecule at $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.

We wish to express our thanks to Professor Robert E. Ireland for providing the compound and for his encouragement throughout this project. One of us (TCM) is the recipient of a National Institutes of Health Postdoctoral Fellowship.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A 27, 157-165.

Duchamp, D. J. (1964). Program and Abstracts, ACA Meeting, Bozeman, Montana; paper B-14, p. 29.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210-214.
Ireland, R. E. \& Welch, S. C. (1970). J. Amer. Chem. Soc. 92, 7232-7234.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Long, R. E. (1965). Ph.D. Thesis, Univ. of California at Los Angeles.
Sayre, D. (1952). Acta Cryst. 5, 60-65.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Wilson, A. J. C. (1942). Nature, Lond. 150, 151-152.

Acta Cryst. (1974). B30, 427

Preparation and Structure Determination of $\mathrm{Ti}_{\mathbf{8}} \mathbf{S}_{\mathbf{3}}$

By J.P. Owens and H.F. Franzen
Ames Laboratory-USAEC and Department of Chemistry, Iowa State University, Ames, Iowa 50010, U.S.A.

(Received 1 June 1973; accepted 8 October 1973)
$\mathrm{Ti}_{8} \mathrm{~S}_{3}$ is monoclinic $C 2 / m, a=32.69$ (1), $b=3.327$ (2), $c=19.36$ (2) $\AA, \beta=139.9(5)^{\circ}, V=1356$ (7) \AA^{3}. The structure was determined by single-crystal methods and refined to $R=0.08$ by least-square calculations. The composition was deduced from the structure. There are a great many structural similarities between $\mathrm{Ti}_{8} \mathrm{~S}_{3}$ and $\mathrm{Ti}_{2} \mathrm{~S}$.

Introduction

$\mathrm{Ti}_{8} \mathrm{~S}_{3}$ was first prepared by heating 150 mg of a pelletized mixture of TiS and titanium metal with an overall Ti / S ratio of 3.0 to $1125^{\circ} \mathrm{C}$. The small single crystal used in structure determination was obtained from the partially melted pellet which was a mixture of $\mathrm{Ti}_{8} \mathrm{~S}_{3}$ and $\mathrm{Ti}_{2} \mathrm{~S}$. Rotation and zero and first-layer Weissenberg patterns indicated that the crystal was C-centered monoclinic with the crystal-rotation axis coincident with the unique crystallographic b axis of the unit cell. The conditions for reflection were observed to be

$$
\begin{array}{ll}
h k l: & h+k=2 n \\
h 0 l: & h=2 n \\
0 k 0: k=2 n .
\end{array}
$$

The possible space groups consistent with this observation are $C 2, \mathrm{Cm}$, and $C 2 / m . C 2$ was ruled out because the unitary structure factors for the $h 0 l$ and $h 2 l$ reflections were essentially equal, indicating that the atoms are located in mirror planes perpendicular to the b axis.
Single-crystal X-ray diffraction data were collected with a Hilger-Watts four-circle automated diffractometer, coupled with an SDS 910 computer as described by Dahm, Bensen, Nimrod, Fitzwater \& Jacobson
(1967). Peak-height intensities were measured. Zirco-nium-filtered Mo $K \alpha$ radiation was used to obtain data for non-extinguished reflections in the first two octants with $\theta \leq 30^{\circ}$. Lorentz and polarization corrections were applied, but owing to the very small size of the crystal, no absorption correction was made. The crystal dimensions were approximately $10 \mu \times 10 \mu \times 50 \mu$.

The fluctuation level of the counter was assumed to be proportional to the square root of the total counts and the statistical uncertainties of the intensity data were taken to be $(A+B)^{1 / 2} /(A-B)$, where A and B are peak and background counts respectively. Of the 2351 intensity data collected 713 had uncertainties less than 33%.

A Howells, Phillips \& Rogers plot proved to be an inconclusive test for a center of symmetry. The structure was determined by MULTAN techniques (Germain, Main \& Woolfson, 1971) for the non-centrosymmetric space group Cm . The criteria of this technique for judgement of the probable correctness of the various calculated solutions permitted the selection of a most probable solution. This trial structure placed atoms in 44 independent point sets. The titanium and sulfur positions were distinguished by examining the atomic coordination polyhedra. It was noted that a center of symmetry was present in the trial structure which implied that $C 2 / m$ rather than $C m$ was the cor-
rect space group. The structure was refined by leastsquares computation (Busing, Martin \& Levy, 1962), with atomic scattering factors by Hansen, Herman, Lea \& Skillman (1964), and the assumed space group C2/m. Isotropic temperature factors were assumed in the refinement. All of the original titanium and sulfur positions from the MULTAN solution were within $0.5 \AA$ of the final refined positions given in Table 1. The structure was refined by use of the data with uncertainties $\leq 33 \%$; the unweighted R index calculated from $R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$ was 0.080 , and the positional uncertainties less than $0.014 \AA$ for titanium and less than $0.020 \AA$ for sulfur.*

Table 1. Final atomic parameters for $\mathrm{Ti}_{8} \mathrm{~S}_{3}$
All atoms occupy fourfold positions (i) $x, 0, z$ of space group C2/m.

	x	y	z	$B\left(\AA^{2}\right)$
$\mathrm{Ti}(1)$	0.5795 (4)	$0 \cdot 0$	$0 \cdot 5867$ (7)	$1 \cdot 0$ (2)
$\mathrm{Ti}(2)$	0.5943 (4)	$0 \cdot 0$	$0 \cdot 7732$ (7)	$1 \cdot 1$ (2)
$\mathrm{Ti}(3)$	$0 \cdot 5680$ (4)	$0 \cdot 0$	0.0804 (7)	$1 \cdot 0$ (2)
$\mathrm{Ti}(4)$	$0 \cdot 6223$ (4)	$0 \cdot 0$	$0 \cdot 3128$ (7)	$1 \cdot 0$ (2)
$\mathrm{Ti}(5)$	$0 \cdot 6712$ (4)	$0 \cdot 0$	$0 \cdot 0034$ (7)	$0 \cdot 9$ (2)
$\mathrm{Ti}(6)$	0.6956 (4)	0.0	0.6419 (7)	$1 \cdot 0$ (2)
$\mathrm{Ti}(7)$	$0 \cdot 7180$ (4)	$0 \cdot 0$	$0 \cdot 8292$ (7)	0.9 (2)
$\mathrm{Ti}(8)$	0.7033 (4)	$0 \cdot 0$	0.2776 (7)	$0 \cdot 7$ (2)
$\mathrm{Ti}(9)$	0.8001 (4)	$0 \cdot 0$	0.0692 (7)	1.2(2)
$\mathrm{Ti}(10)$	0.7658 (4)	$0 \cdot 0$	0.5729 (7)	$0 \cdot 9$ (2)
$\mathrm{Ti}(11)$	0.8363 (4)	0.0	0.5171 (7)	$1 \cdot 0$ (2)
$\mathrm{Ti}(12)$	$0 \cdot 8476$ (4)	$0 \cdot 0$	0.8980 (7)	0.9 (2)
$\mathrm{Ti}(13)$	$0 \cdot 9410$ (4)	0.0	$0 \cdot 1633$ (7)	$1 \cdot 0$ (2)
$\mathrm{Ti}(14)$	$0 \cdot 0105$ (4)	$0 \cdot 0$	0.5945 (7)	$1 \cdot 0$ (2)
$\mathrm{Ti}(15)$	0.9904 (4)	$0 \cdot 0$	0.8926 (7)	$0 \cdot 9$ (2)
$\mathrm{Ti}(16)$	$0 \cdot 4485$ (4)	0.0	0.6199 (7)	$1 \cdot 1$ (2)
S(1)	0.5719 (6)	$0 \cdot 0$	0.9517 (9)	$0 \cdot 9$ (2)
S(2)	0.7430 (6)	0.0	0.2061 (10)	$1 \cdot 1$ (2)
S(3)	0.8933 (6)	$0 \cdot 0$	0.4711 (10)	$0 \cdot 9$ (2)
S(4)	0.8722 (6)	$0 \cdot 0$	0.7755 (10)	$1 \cdot 0$ (2)
S(5)	0.8710 (6)	$0 \cdot 0$	$0 \cdot 2704$ (10)	$0 \cdot 9$ (2)
S(6)	0.9462 (6)	$0 \cdot 0$	0.7152 (10)	$1 \cdot 3$ (3)

* A table of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30243 (4 pp.). Copies may be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, England.

A difference Fourier electron density map obtained from these data was void of significant maxima. The highest values in this difference map occurred on atom positions and were less than 0.5 e .

Discussion

There exist in $\mathrm{Ti}_{8} \mathrm{~S}_{3}$ structural units which are similar to those found in $\mathrm{Ti}_{2} \mathrm{~S}$. These units are linked in such a way as to yield a relatively large and complex unit cell, as can be seen in Fig. 1. Thus, a reduction in complexity is accomplished by considering the similarities between the $\mathrm{Ti}_{8} \mathrm{~S}_{3}$ and $\mathrm{Ti}_{2} \mathrm{~S}$ structures.

Fig. 2. The crystal structure of $\mathrm{Ti}_{2} \mathrm{~S}$ viewed along the c axis.

Fig. 1. The crystal structure of $\mathrm{Ti}_{8} \mathrm{~S}_{3}$ viewed along the b axis.

	$\underset{i=1}{\stackrel{0}{E}}$	$\underset{\sim}{\vartheta}$	$\underset{\sim}{\infty}$	\widehat{N}	$\underset{\sqrt{*}}{\mathscr{F}}$	$\frac{\sqrt[n]{n}}{\sqrt{n}}$

\qquad
合
Z
Z

Eig
Ü
Un
（Deviations for $\mathrm{Ti}-\mathrm{S}$ and $\mathrm{Ti}-\mathrm{Ti}$ distances are 0.050 and $0.035 \AA$ respectively．）
苞

\qquad
\qquad

ob

		는ํㅜか․․․ 		ベへ்へ்へ்		
	－NNNN－	－NNNN	－－NNNN－	NNNNN	－NNT－N	$\rightarrow-\mathrm{NNNT}$
	ふたぶ心た。					nson
玉灾	$\underset{\underset{F}{\circ}}{\widehat{O}}$	$\underset{i=}{\stackrel{O}{]}}$	\widehat{E}	$\underset{F}{\mathbb{E}}$	$\stackrel{\cong}{\rightrightarrows}$	$\underset{F}{\underset{F}{G}}$

	$\underset{\mathrm{F}}{\mathrm{~F}}$	$\underset{\sim}{\cong}$	$\underset{F}{\mathscr{F}}$	$\stackrel{n}{\leftrightarrows}$	$\stackrel{\text { O }}{6}$

The $\mathrm{Ti}_{2} \mathrm{~S}$ structure is shown in projection onto the $a b$ plane in Fig. 2 (Conard, 1969). The solid lines trace out the projection of a structural unit which is repeated indefinitely in the \mathbf{c} direction. It consists of the trigonal prismatic coordination polyhedra around $S(1)$ and $S(2)$ (prism axes parallel to the crystallographic c axis) and around $\mathrm{S}(3)$ (prism axis perpendicular to the c axis), and two cubic coordination polyhedra around $\mathrm{Ti}(4)$, which share faces to form the structural unit.

The 2_{1} screw operation implicit in the space group (Pnnm) of $\mathrm{Ti}_{2} \mathrm{~S}$ causes repetition of this unit centered on the origin, as shown by the dashed outline of the unit in Fig. 2. The $\mathrm{Ti}(5)-\mathrm{Ti}(6)$ prism edge is shared between the units. It also results that $\mathrm{Ti}(3)$ of the dashed unit is a capping atom for the triangular prism around S(1).
$\mathrm{Ti}_{8} \mathrm{~S}_{3}$ has two basic structural units which are similar to that found in $\mathrm{Ti}_{2} \mathrm{~S}$. These are illustrated in solid outline in Fig. 3(a) and (b). Each of these shares only three cube faces with trigonal prisms as compared to six in $\mathrm{Ti}_{2} \mathrm{~S}$. The unit of Fig. 3(a) differs from that of Fig. 3(b) inasmuch as one of the trigonal prisms has its axis parallel to the plane of the figure [the prism around $\mathrm{S}(6)$].

Each of the basic units is inverted through a center of symmetry as shown by the dashed outlines in Fig. $3(a)$ and (b). There result fused units as shown and these in large measure provide the building blocks of the structure. The units are centered at $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{2}\right)$ and at $\left(\frac{1}{2}, \frac{1}{4}, 0\right)$ respectively as can be seen in Fig. 1. The nearly complete structure results from the translation of these units by $\frac{1}{2}, \frac{1}{2}, 0$. This repetition produces cubes which are filled by $\mathrm{Ti}(14)$. The two basic units of $\mathrm{Ti}_{8} \mathrm{~S}_{3}$ are linked via edge sharings and capping of polyhedra, including the $\mathrm{Ti}(13)-\mathrm{Ti}(15)$ edge which is shared like the edge in $\mathrm{Ti}_{2} \mathrm{~S}$. The similarity between the $\mathrm{Ti}_{8} \mathrm{~S}_{3}$ and $\mathrm{Ti}_{2} \mathrm{~S}$ structures is further emphasized by the similarities of the interatomic distances as can be seen by comparing the interatomic distances given in Table 2 with those given for $\mathrm{Ti}_{2} \mathrm{~S}$ in a previous publication (Owens, Conard \& Franzen, 1967). Atoms at similar positions in the two structures have distances of the same length within experimental error.

Thus, there are remarkable similarities between the two metal-rich sulfides of titanium despite the difference in stoichiometry. The two compounds can be regarded as modifications of a structure class.

(a)

(b)

Fig.3. (a) One of the basic structure units of $\mathrm{Ti}_{8} \mathrm{~S}_{3}$. (b) The second basic structure unit of $\mathrm{Ti}_{8} \mathrm{~S}_{3}$.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). Oak Ridge National Laboratory Report ORNL-TM-305, Oak Ridge, Tennessee.
Conard, B. R. (1969). Ph. D. Thesis, Iowa State Univ., Ames, Iowa.
Dahm, D. J., Bensfen, J. E., Nimrod, D. M., Fitzwater, D. R. \& Jacobsen, R. A. (1967). USAEC Report IS-1701.

Germain, G., Main, P. \& Woolfson, M. (1971). Acta Cryst. A 27, 368-376.
Hansen, H. P. Herman, F., lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Owens, J. P., Conard, B. R. \& Franzen, H. F. (1967). Acta Cryst. 23, 77-82.

